36 research outputs found

    Advanced monitoring in P2P botnets

    Get PDF
    Botnets are increasingly being held responsible for most of the cybercrimes that occur nowadays. They are used to carry out malicious activities like banking credential theft and Distributed Denial of Service (DDoS) attacks to generate profit for their owner, the botmaster. Traditional botnets utilized centralized and decentralized Command-and-Control Servers (C2s). However, recent botnets have been observed to prefer P2P-based architectures to overcome some of the drawbacks of the earlier architectures. A P2P architecture allows botnets to become more resilient and robust against random node failures and targeted attacks. However, the distributed nature of such botnets requires the defenders, i.e., researchers and law enforcement agencies, to use specialized tools such as crawlers and sensor nodes to monitor them. In return to such monitoring, botmasters have introduced various countermeasures to impede botnet monitoring, e.g., automated blacklisting mechanisms. The presence of anti-monitoring mechanisms not only render any gathered monitoring data to be inaccurate or incomplete, it may also adversely affect the success rate of botnet takedown attempts that rely upon such data. Most of the existing monitoring mechanisms identified from the related works only attempt to tolerate anti-monitoring mechanisms as much as possible, e.g., crawling bots with lower frequency. However, this might also introduce noise into the gathered data, e.g., due to the longer delay for crawling the botnet. This in turn may also reduce the quality of the data. This dissertation addresses most of the major issues associated with monitoring in P2P botnets as described above. Specifically, it analyzes the anti-monitoring mechanisms of three existing P2P botnets: 1) GameOver Zeus, 2)Sality, and 3) ZeroAccess, and proposes countermeasures to circumvent some of them. In addition, this dissertation also proposes several advanced anti-monitoring mechanisms from the perspective of a botmaster to anticipate future advancement of the botnets. This includes a set of lightweight crawler detection mechanisms as well as several novel mechanisms to detect sensor nodes deployed in P2P botnets. To ensure that the defenders do not loose this arms race, this dissertation also includes countermeasures to circumvent the proposed anti-monitoring mechanisms. Finally, this dissertation also investigates if the presence of third party monitoring mechanisms, e.g., sensors, in botnets influences the overall churn measurements. In addition, churn models for Sality and ZeroAccess are also derived using fine-granularity churn measurements. The works proposed in this dissertation have been evaluated using either real-world botnet datasets, i.e., that were gathered using crawlers and sensor nodes, or simulated datasets. Evaluation results indicate that most of the anti-monitoring mechanisms implemented by existing botnets can either be circumvented or tolerated to obtain monitoring data with a better quality. However, many crawlers and sensor nodes in existing botnets are found vulnerable to the antimonitoring mechanisms that are proposed from the perspective of a botmaster in this dissertation. Analysis of the fine-grained churn measurements for Sality and ZeroAccess indicate that churn in these botnets are similar to that of regular P2P file-sharing networks like Gnutella and Bittorent. In addition, the presence of highly responsive sensor nodes in the botnets are found not influencing the overall churn measurements. This is mainly due to low number of sensor nodes currently deployed in the botnets. Existing and future botnet monitoring mechanisms should apply the findings of this dissertation to ensure high quality monitoring data, and to remain undetected from the bots or the botmasters

    A Review on Features’ Robustness in High Diversity Mobile Traffic Classifications

    Get PDF
    Mobile traffics are becoming more dominant due to growing usage of mobile devices and proliferation of IoT. The influx of mobile traffics introduce some new challenges in traffic classifications; namely the diversity complexity and behavioral dynamism complexity. Existing traffic classifications methods are designed for classifying standard protocols and user applications with more deterministic behaviors in small diversity. Currently, flow statistics, payload signature and heuristic traffic attributes are some of the most effective features used to discriminate traffic classes. In this paper, we investigate the correlations of these features to the less-deterministic user application traffic classes based on corresponding classification accuracy. Then, we evaluate the impact of large-scale classification on feature's robustness based on sign of diminishing accuracy. Our experimental results consolidate the needs for unsupervised feature learning to address the dynamism of mobile application behavioral traits for accurate classification on rapidly growing mobile traffics

    Botnet-based Distributed Denial of Service (DDoS) Attacks on Web Servers: Classification and Art

    Full text link
    Botnets are prevailing mechanisms for the facilitation of the distributed denial of service (DDoS) attacks on computer networks or applications. Currently, Botnet-based DDoS attacks on the application layer are latest and most problematic trends in network security threats. Botnet-based DDoS attacks on the application layer limits resources, curtails revenue, and yields customer dissatisfaction, among others. DDoS attacks are among the most difficult problems to resolve online, especially, when the target is the Web server. In this paper, we present a comprehensive study to show the danger of Botnet-based DDoS attacks on application layer, especially on the Web server and the increased incidents of such attacks that has evidently increased recently. Botnet-based DDoS attacks incidents and revenue losses of famous companies and government websites are also described. This provides better understanding of the problem, current solution space, and future research scope to defend against such attacks efficiently

    The End of the Canonical IoT Botnet: A Measurement Study of Mirai's Descendants

    Full text link
    Since the burgeoning days of IoT, Mirai has been established as the canonical IoT botnet. Not long after the public release of its code, researchers found many Mirai variants compete with one another for many of the same vulnerable hosts. Over time, the myriad Mirai variants evolved to incorporate unique vulnerabilities, defenses, and regional concentrations. In this paper, we ask: have Mirai variants evolved to the point that they are fundamentally distinct? We answer this question by measuring two of the most popular Mirai descendants: Hajime and Mozi. To actively scan both botnets simultaneously, we developed a robust measurement infrastructure, BMS, and ran it for more than eight months. The resulting datasets show that these two popular botnets have diverged in their evolutions from their common ancestor in multiple ways: they have virtually no overlapping IP addresses, they exhibit different behavior to network events such as diurnal rate limiting in China, and more. Collectively, our results show that there is no longer one canonical IoT botnet. We discuss the implications of this finding for researchers and practitioners

    SECS/GEMsec: A mechanism for detection and prevention of cyber-attacks on SECS/GEM communications in industry 4.0 landscape

    Get PDF
    Industry 4.0 as a driving force is making huge strides, particularly in the manufacturing sector, where all integral components involved in the production processes are getting digitally interconnected. Fused with improved automation and robotics, machine learning, artificial intelligence, big data, cloud computing, and the Internet of Things (IoT), this open network interconnectivity makes industrial systems increasingly vulnerable to cyber-attacks. While the impacts and intentions of cyber-attacks vary, they always have a detrimental effect on manufacturers, including financial losses, supply chain disruption, loss of reputation and competitiveness, and theft of corporate secrets. Semiconductor Equipment Communication Standard/Generic Equipment Model (SECS/GEM) is a legacy Machine-to-Machine (M2M) communication protocol used profoundly in the semiconductor and other manufacturing industries. It is mainly designed to be utilized in a controlled and regulated factory environment separated from external networks. Industry 4.0 has revolutionized the manufacturing industry and has brought SECS/GEM back to the limelight as it lacks security safeguards to protect against cyber-attacks. This paper proposes a digital signature-based security mechanism that offers authentication, integrity, and protection against cyber-attacks. The proposed mechanism is compared with the industry-standard SECS/GEM implementation in terms of processing time, payload overhead, and resilience against cyber-attacks. The results indicate that SECS/GEMsec effectively prevented untrusted entities from establishing communication links with legit industrial equipment while maintaining message integrity by discarding forged messages. Additionally, it protected SECS/GEM communications against Denial-of-Service (DoS) attacks, Replay attacks, and False-Data-Injection-Attack (FDIA) attacks

    Advanced monitoring in P2P botnets

    No full text
    Botnets are increasingly being held responsible for most of the cybercrimes that occur nowadays. They are used to carry out malicious activities like banking credential theft and Distributed Denial of Service (DDoS) attacks to generate profit for their owner, the botmaster. Traditional botnets utilized centralized and decentralized Command-and-Control Servers (C2s). However, recent botnets have been observed to prefer P2P-based architectures to overcome some of the drawbacks of the earlier architectures. A P2P architecture allows botnets to become more resilient and robust against random node failures and targeted attacks. However, the distributed nature of such botnets requires the defenders, i.e., researchers and law enforcement agencies, to use specialized tools such as crawlers and sensor nodes to monitor them. In return to such monitoring, botmasters have introduced various countermeasures to impede botnet monitoring, e.g., automated blacklisting mechanisms. The presence of anti-monitoring mechanisms not only render any gathered monitoring data to be inaccurate or incomplete, it may also adversely affect the success rate of botnet takedown attempts that rely upon such data. Most of the existing monitoring mechanisms identified from the related works only attempt to tolerate anti-monitoring mechanisms as much as possible, e.g., crawling bots with lower frequency. However, this might also introduce noise into the gathered data, e.g., due to the longer delay for crawling the botnet. This in turn may also reduce the quality of the data. This dissertation addresses most of the major issues associated with monitoring in P2P botnets as described above. Specifically, it analyzes the anti-monitoring mechanisms of three existing P2P botnets: 1) GameOver Zeus, 2)Sality, and 3) ZeroAccess, and proposes countermeasures to circumvent some of them. In addition, this dissertation also proposes several advanced anti-monitoring mechanisms from the perspective of a botmaster to anticipate future advancement of the botnets. This includes a set of lightweight crawler detection mechanisms as well as several novel mechanisms to detect sensor nodes deployed in P2P botnets. To ensure that the defenders do not loose this arms race, this dissertation also includes countermeasures to circumvent the proposed anti-monitoring mechanisms. Finally, this dissertation also investigates if the presence of third party monitoring mechanisms, e.g., sensors, in botnets influences the overall churn measurements. In addition, churn models for Sality and ZeroAccess are also derived using fine-granularity churn measurements. The works proposed in this dissertation have been evaluated using either real-world botnet datasets, i.e., that were gathered using crawlers and sensor nodes, or simulated datasets. Evaluation results indicate that most of the anti-monitoring mechanisms implemented by existing botnets can either be circumvented or tolerated to obtain monitoring data with a better quality. However, many crawlers and sensor nodes in existing botnets are found vulnerable to the antimonitoring mechanisms that are proposed from the perspective of a botmaster in this dissertation. Analysis of the fine-grained churn measurements for Sality and ZeroAccess indicate that churn in these botnets are similar to that of regular P2P file-sharing networks like Gnutella and Bittorent. In addition, the presence of highly responsive sensor nodes in the botnets are found not influencing the overall churn measurements. This is mainly due to low number of sensor nodes currently deployed in the botnets. Existing and future botnet monitoring mechanisms should apply the findings of this dissertation to ensure high quality monitoring data, and to remain undetected from the bots or the botmasters

    Advanced monitoring in P2P botnets: a dual perspective

    No full text

    CAD+: Detecting Colluding Nodes in Gray Hole Attacks

    No full text
    corecore